If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2+15d+54=0
a = 1; b = 15; c = +54;
Δ = b2-4ac
Δ = 152-4·1·54
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3}{2*1}=\frac{-18}{2} =-9 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3}{2*1}=\frac{-12}{2} =-6 $
| d+15d+54=0 | | -2(6x-2)=-12x-4 | | 2x=(360~4) | | F(x)=x3+3x2+3x+1 | | 3x-5(x-2)=-9+3x-21 | | F(x)=x3+3x. | | 33=w/2+14 | | 5m+14=8m-4 | | 7x+2=5x-20 | | 145=5(x-70)+70 | | y(y-2)=-32 | | 20(2x+1)=10(4x+6) | | 10x+30(x-5)=450 | | 3/x=11/5 | | 3r-7r+9r=0 | | 4x^2+16x-132=0 | | x/9-10=35 | | 3(x+7)=7x+8-4x+13 | | 2s+4=-20-10 | | 15(3x+2)=7(2x+2) | | 3(x+5)=7x+8-4x+7 | | 2y^2+8y=-5 | | 1.06*(1-x)=1.03 | | (x+3)/5=5 | | 7+4i/6+4i=7/6 | | 4-6x=10-x | | 2(6x+10)=44 | | 2(6x+10)=4 | | 4x+27/2=(x-1)/3 | | 6x-7=2x+33 | | 9b=7b/3b | | 5/8=b/60 |